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ABSTRACT Future telecommunications will increasingly integrate Al capabilities into network infrastruc-
tures to deliver seamless and harmonized services closer to end-users. However, this progress also raises
significant trust and safety concerns. The machine learning systems orchestrating these advanced services
will widely rely on deep reinforcement learning (DRL) to process multi-modal requirements datasets and
make semantically modulated decisions, introducing three major challenges: (1) First, we acknowledge
that most explainable Al research is stakeholder-agnostic while, in reality, the explanations must cater for
diverse telecommunications stakeholders, including network service providers, legal authorities, and end
users, each with unique goals and operational practices; (2) Second, DRL lacks prior models or established
frameworks to guide the creation of meaningful long-term explanations of the agent’s behaviour in a
goal-oriented RL task, and we introduce state-of-the-art approaches such as reward machine and sub-goal
automata that can be universally represented and easily manipulated by logic programs and verifiably
learned by inductive logic programming of answer set programs; (3) Third, most explainability approaches
focus on correlation rather than causation, and we emphasise that understanding causal learning can further
enhance 6G network optimisation. Together, in our judgement they form crucial enabling technologies for
trustworthy services in 6G. This review offers a timely resource for academic researchers and industry
practitioners by highlighting the methodological advancements needed for explainable DRL (X-DRL) in
6G. It identifies key stakeholder groups, maps their needs to X-DRL solutions, and presents case studies
showcasing practical applications. By identifying and analysing these challenges in the context of 6G case
studies, this work aims to inform future research, transform industry practices, and highlight unresolved
gaps in this rapidly evolving field.

INDEX TERMS 6G, explainable Al, reinforcement learning, trust, stakeholders, causal learning

. INTRODUCTION tend connectivity, intelligence, and immersive experiences
A. Context and Motivation across industries. To meet such dynamic service demands

Ever before has telecommunication infrastructure been (bandwidth, coverage, latency, energy), the network needs to
NreSponSible for such a diverse range of services in perform large-scale multi-objective optimisation over highly
human history, enabling transformative use cases that ex- variable environments with partially observable dynamics

VOLUME ,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/0JCOMS.2025.3563415

Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

that are constrained with limited resources. As such, 6G will
require advanced artificial intelligence, especially Reinforce-
ment Learning (RL), to efficiently and dynamically manage
heterogeneous infrastructure, optimize communication proto-
cols, and orchestrate network resources in real-time []1].

However, the integration of ubiquitous Al in 6G introduces
unprecedented challenges. For the first time on a large
scale and in real-time, human well-being becomes deeply
intertwined with 6G services. This extensive use of Al in
6G can potentially cause significant harm to human agency,
safety, privacy, fairness, and social and environmental well-
being [2], [3]. Ensuring the above principles requires the Al
in 6G to be understandable for any stakeholders and in any
context of the AI value chain, which can be addressed with
proper XAl techniques.

B. Review of Existing Related Surveys

Extensive efforts have been put into proposing and applying
novel XAI techniques for different Al-powered processes in
6G [4]. Review papers have also been published summarizing
the benefits and challenges of XAI in 6G. For example,
[5]] covered a broad range of XAI application areas in 6G,
including technical areas of 6G network (e.g., intelligent radio,
trust and security, privacy, resource management, edge Al,
Zero Touch Network and Service Management), Al-powered
6G use cases (e.g., intelligent health and wearable, industry
5.0, connected autonomous vehicles, smart grid 2.0, multi-
sensory XR applications and smart governance) and XAI-
related research projects and research challenges. [6] reviews
the XAI with a specific focus on O-RAN in 6G, including
topics such as the deployment of XAI pipelines in O-RAN,
potential applications of XAI in existing Al-driven O-RAN
solutions, XAI for O-RAN use cases (Quality-of-Experience
Optimization, traffic steering, user access management etc.),
and research projects and standards on XAI for O-RAN. We
identify the following gaps in the literature:

e Gap 1: Existing reviews primarily focus on stakeholder-
agnostic XAI methodologies [[6] or briefly address
only the dimensions of "who" and "why" [5]. Limited
discussion is present on "what" and "how," specifically
concerning stakeholder-specific requirements and ap-
proaches.

e Gap 2: the reviewed XAI techniques often target a
single ML/AI process that does not involve sequential
learning as in reinforcement learning (RL), which is
widely adopted to perform sequential decision-making
for real-time 6G network optimization. This is basically
due to the highly variable environments with partially
observable dynamics that are constrained with limited
resources to meet a large number of dynamic demands.

e Gap 3: the reviewed XAI techniques often focus
on learning correlations between input data features
and the outcomes of the AI models. This curbs the
causal understanding of the network’s decision-making
processes.

C. Main Contributions and Organisation of Paper

To address the limitations identified above, we identify the
following research questions that we will try to answer in
this review article:

1) Stakeholders: What stakeholders require what kinds
of interpretability/explainability?

2) Explainable Reinforcement Learning: How can we
explain the sequences of decisions made by an agent in
RL-based approaches, as one of the promising solutions
toward solving complicated 6G optimisation problems?

3) Causal Understanding for Explainability and Per-
formance: How can the causal understanding of deep
models help to improve AI/ML pipeline performance,
from reducing variable search space to transfer learning
and improving explainability?

4) Current Challenges: What are the remaining open
challenges?

To demonstrate, we select 1) network slicing (NS) and 2)
unmanned aerial vehicles (UAVs) as two main mission-critical
grounds in 6G where failing to provide explainable and safe
decision-making can lead to catastrophic consequences. The
reviewed XAI techniques will be contextualised in the two
use cases from the stakeholder’s perspective in practice:

e Network slicing is a key enabler for 6G networks,
enabling virtualized and isolated slices managed by
distinct resource policies. Each slice meets specific
Quality-of-Service (QoS) requirements and Service-
level Agreements (SLAs). Employing explainable
decision-making for resource allocation—including re-
source block (RB) assignment, user admission control,
and scheduling—offers transparency, aiding service
providers in quickly identifying and mitigating service
delivery issues for end users.

e Drones may be used as mobile base stations (BSs)
and communication relays to enhance connectivity in
complex and dynamic environments, underserved or
disaster-hit areas. The UAV scenario is discussed here
to provide insights into the challenges regarding the
need to understand and control drone behaviour to
ensure effective communication. Critical aspects involve
making autonomous trajectory planning and service
provisioning interpretable, explainable, and transparent
for different stakeholders, thereby ensuring trust and
legal compliance.

The paper organization is shown in Figure [2|

Il. Background

A key challenge in Al development is ensuring safe perfor-
mance in unforeseen real-world situations not encountered
during training or testing. According to EU Al ethics guide-
lines, Al systems require human oversight, accountability, and
transparency, necessitating interpretability and explainability
for effective human engagement. Such engagement ranges
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FIGURE 1: Forms of Al understanding methods and application to 6G stakeholder examples.

from formal system verification during design to audits at
runtime. However, we have yet to agree on clear definitions
for related terms, often using interpretability, explainabil-
ity, and transparency interchangeably. In this section, we
focus primarily on interpretability and explainability, briefly
addressing transparency within the context of XAl for 6G.

A. Interpretability, Explainability, and Transparency of Al

For clarity, it is worth distinguishing between the two
most prevalent terms: interpretability and explainability (7).
Following Glanois et al. [8], interpretability may be defined as
an inherent model quality describing the extent to which the
inner workings of a model can be examined and understood.
Interpretability is frequently enhanced through the use of

“white-box” architectures, such as sets of first-order logic rules.

Conversely, explainability allows us to describe an external
understanding of model behaviour, based on active, post hoc,
efforts to explain the decision-making process. Explainability
techniques are typically applied to trained models to provide
insights based on externally observed relations rather than
internal mechanisms. An example is feature importance
analysis, where input variables are systematically altered and
the resulting impact on model outputs is quantified. Model
interpretability and explainability share the common goal of
increasing human understanding of the Al system and the
insights gained through either approach should ultimately be
communicated in a stakeholder-centered format, referred to
in both cases as an “explanation”.
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Although interpretability offers insights which are better
grounded in model internals, it is frequently associated
with reduced model performance (e.g., higher Mean Square
Error [9] in RAN slicing AI model), and methods are often
architecture or application-specific, with limited scalability
[8l. Explainability methods, conversely, can offer greater
flexibility and broader applicability, making them valuable
for gaining insights in complex scenarios where full internal
interpretability may be neither necessary nor feasible. Im-
portantly, interpretability and explainability approaches can
be viewed as existing on a spectrum, and are not mutually
exclusive: insightful results may be achieved through applying
explainability methods to partially interpretable models, for
instance [[10]].

Broadly, interpretability and explainability serve to address
incompleteness in the formalisation of a problem, improving
understanding of how a system will behave in new situations
or concerning auxiliary criteria such as fairness [[11]]. In this
sense, model explanations enable stakeholders to gain insights
into abstract or complex attributes that are challenging to fully
define or directly optimise for. These may include causality,
reliability or scientific knowledge: facets of understanding
which may be sufficient to alleviate ethical, legal and
operational concerns about a system.
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1) Interpretability and Reinforcement Learning

For RL, both interpretability and explainability imply a level
of understanding of the reasoning behind agent decisions.
Despite a general consensus that this is desirable, there is,
however, no precise definition of when it is necessary or
what it entails, neither broadly nor for specific use cases.
Consequently, there is a lack of standardised metrics or
benchmarks for assessing the quality or utility of explanations.
As Doshi-Velez and Kim [11] critically observe, the field
often appears to default to a “you’ll know it when you see
it” approach.

Despite ambiguity regarding the definition, there exists a
multitude of methods for increasing the interpretability of
RL agents. We broadly categorise these as offering high or
low-level understanding, with the latter further comprising
direct and indirect approaches, and describe a non-exhaustive
selection. Focus is placed on the primary challenge of
understanding decision-making, but it is relevant to note that
interpreting inputs and transition models are also important
topics when considering complex architectures.

High-level interpretability approaches offer broad, generally
top-down perspectives on agent-decision making. Hierarchical
RL decomposes goals into sub-tasks (Feudal approaches) or
sub-policies (policy tree approaches) [12]]. This decompo-
sition most effectively contributes to interpretability when
discernible sub-behaviours, such as motor primitives [13]], are
explicitly learned. Alternatively, high-level interpretability can
be obtained via direct incorporation of declarative knowledge

into RL frameworks [[14]]. Examples include defining high-
level rules to guide actions [[15]], and integrating knowledge-
based reasoning paradigms with learning architectures [[16].
However, the interpretability offered by these approaches is
constrained: in HRL, interpretability is limited to the level
of abstraction of the sub-task or policy, and in knowledge-
based systems, it is broadly restricted to the scope of the
incorporated knowledge. As evidenced by these approaches,
imposing high-level interpretability frequently relies on prior
knowledge of the desired RL solution and interpretation. This
limits both applicability and performance: policy-tree HRL
approaches, for instance, constrain the policy space and thus
may not reach optimal policies.

Low-level interpretability can be directly achieved by
learning more interpretable architectures for action selection.
Decision trees are a prevalent example: acyclic graphs
pass input variables through decision nodes, which select
subsequent nodes based on feature values until a leaf node is
reached. These trees can represent Q-values or policies, and
recent work on ‘soft decision trees’ relaxes their classically
discrete nature and enables efficient RL through gradient
descent [[17]]. Alternatively, diverse methods exist to generate
effective RL policies in the form of symbolic equations,
e.g., using genetic programming to efficiently search a
space of function trees [18] or training a recurrent neural
network (RNN) to directly generate policy equations [19]].
Beyond mathematical operators, policies have been learned
as weighted combinations of first-order logic rules [20].
Recent efforts have increased the flexibility and scalability
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of this approach, for instance by weighting predicates, the
building blocks of rules, rather than the rules themselves [21]],
or by using logical reasoning modules to induce separate
policies [22].

Indirect approaches use similar underlying architectures but
differ in the manner in which these are obtained. While direct
approaches immediately search for interpretable policies,
indirect approaches aim to replicate non-interpretable ones,
using techniques analogous to policy distillation or imitation
learning. VIPER, an imitation-learning-like algorithm which
compresses DRL policies into decision trees, demonstrates
how this indirect approach can improve scalability [23]]. Sim-
ilarly, RNN-based equation generation employs the indirect
approach to scale to large action spaces by sequentially
generating action-equations using a neural network “anchor”
policy to select actions for which an equation is yet to be
defined [19].

These low-level methods rely on using fundamentally
different model architectures, which are generally deemed
to be interpretable due to characteristics such as comprising
fewer model components, containing transparent and tractable
component interactions, and consisting of components which
can be objectively translated to natural language. However,
these architectural modifications can lead to issues regarding
scalability and performance. Scaling the described methods
rapidly becomes computationally prohibitive, even when an
indirect approach is adopted [8]]. Moreover, such scaling
can compromise interpretability as a result of increasing the
number of model components and their interactions. Notably,
few existing low-level interpretability approaches apply their
method to real-world RL problems, instead evaluating in
simple control environments such as “Cart Pole” and the
grid-based “Cliff Walk”.

2) Explainability

Rather than directly deriving explanations from model in-
ternals, explainability approaches apply external methods to
detect and describe input-output relations. This distinction
can be illustrated using a third application of decision trees:
as purely explanatory models [24]. Here, as for indirect
interpretability, the decision tree is distilled from a deep
neural network, with the distinction that it is used solely
to explain action selection, which is still performed by the
original neural network.

Explainability places a strong focus on the presentation of
insights, where saliency maps or textual explanations are
common approaches. Saliency maps highlight the image
regions considered important for an agent’s decision and
can be constructed based on attention, gradients, feature
perturbations, or object segmentation [25]. The result offers
appealingly understandable visuals, but their utility and
accuracy have been challenged. Atrey et al. [25] found
their use in RL to be subjective and insufficiently falsifiable
to be used as an explanatory tool, corroborating earlier
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works which raised their potentially misleading nature [26].
Alternative textual approaches frequently involve translating
an agent’s state-action space into human concepts and can
enable interactive explainability. For example, by evaluating
user queries with respect to a policy and transition model
to generate natural language descriptions of expected action
consequences [27].

The need to explicitly define concepts has recently been
addressed with the integration of Large Language Models
(LLMs), e.g., in autonomous driving research [28]]. TransGPT
[29] represents a state-of-the-art approach where a multimodal
dataset is used to train a model capable of answering queries
about driving actions. However, it lacks a direct evaluation
of explanation accuracy, and the use of external models to
retroactively justify input-output relations can be seen as
a concerning example of how explainability may generate
plausible-sounding explanations without genuinely improving
understanding.

These post-hoc explainability methods offer high scalability
and certain methods, such as perturbation-based feature
analysis, allow for application to diverse model architectures.
However, this is counterbalanced by a lack of grounding in
model internals and the risk of offering misleading results.
A challenge thus emerges regarding how the accuracy of
post-hoc explanations can be effectively measured.

B. Existing Challenges

As suggested by [30], there are multiple challenges and
limitations in using XAI in 6G. There are no standard
quantifiable metrics for XAI [31]], where commonly the
explanations consist of visual and textual inputs which can
not be quantified. Efficient metrics seem to be stakeholder
and domain-dependent, although some attempts have been
made to propose general metrics for 6G XAI [3]]. It is
difficult to find the right trade-off between interpretability and
performance [32]], and between explainability and security
and privacy [33[]. Especially, a potential privacy leakage
from XAI is an important challenge [34]. There are legal
challenges related to the explainability of Al in 6G for
regulatory compliance. In the European Union, the GDPR
grants users the right to explanation in algorithmic decision-
making, and failing to comply with the GDPR may result in
fines up to 20 million euros or 4% of the company’s global
revenue. A serious engagement of legal experts is required to
ensure legal compliance. Beyond that, a general engagement
of all stakeholders involved is required to ensure that the
explanations generated are appropriate for each of them.

Appropriate Explanations to Audience: Interpreting
and explaining Al models as well as improving
transparency need to be audience and stakeholder-
centric. It needs to reflect the usage scenario, the
skill level, the operational environment, the legal
requirements and the application context.
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lll. Challenge 1: Requirement of Stakeholder-centered XAl
in 6G

A. Why Stakeholder-centered XAl

A stakeholder of an Al system in general can be any person,
group or organization directly or indirectly involved in the
Al system. Different stakeholders have different needs and
expectations for the explanations of the same Al system. As a
result, to provide useful and understandable explanations, the
XAI approaches should adapt to the expertise and the social
and cultural background of stakeholders since their cognition
and perception are socio-culturally conditioned [36]—[39].

The literature has proposed different ways of catego-
rizing stakeholders, [40] identifies four main stakeholder
communities with different motivations and requirements
for XAl: developers who build Al applications, primarily
concerned with quality assurance, system testing, and de-
bugging, theorists who advance Al theory, with a focus
on understanding fundamental properties and improving the
state of the art, ethicists who are concerned with fairness,
accountability, and transparency in Al systems such as
policymakers, commentators, and critics, and end users who
require explanations to understand and trust Al outputs, and
to make decisions based on those outputs. [35] identifies
five stakeholder classes: non-expert users who interact with
Al systems, developers who design, program, and build Al
systems, affected parties who are impacted by Al decisions,
often without their direct interaction, deployers who decide
where and how to implement Al systems and regulators who
are responsible for creating legal and ethical frameworks for
Al usage.

From the legal or standardization literature, according to
the Ethics Guidelines for Trustworthy Al [2], the stakeholders
include developers who research, design or create Al systems,
deployers who are public or private organizations that
integrate Al systems into their business operations and use
them to offer products or services, end-users who interact with
the Al system, either directly or indirectly and the broader
society including all others who are directly or indirectly
impacted by Al systems. Based on this guideline, the EU
Al Act [41]] identifies additional stakeholder categories for
prescribing legal obligations such as importers who bring Al
systems from third countries into the EU market, authorised
representatives who act on behalf of providers from third
countries within the EU, national competent authorities who
oversee the implementation and enforcement of the Al Act
within member states and the Al Office which facilitate the
development of codes of conduct, provide guidance, and
ensure proper application of the Al Act.

To understand how XAI approaches can be designed
and evaluated to satisfy such diverse stakeholder needs
and expectations, [35] present a conceptual framework as
shown in Fig. 3] Specifically, explainability techniques are
applied to Al systems to generate explanatory information
tailored to the needs of different stakeholders. The format,
completeness, accuracy and currency [42] of explanatory

information influence how well stakeholders understand
the Al system. The degree of understanding achieved by
stakeholders determines whether their specific needs and
expectations (desiderata) are met. The context affects every
stage, altering how explanatory information is interpreted
and how understanding translates into satisfaction. This
conceptual framework highlights the requirement of being
stakeholder-centered for the XAI approaches.

B. Stakeholders of Al in 6G

Al in 6G concerns more than just network providers but also
end users and legal authorities. Based on the literature [30],
[41], [43], [44], we summarize the stakeholder specifications
of XAI in Table [T] with three main stakeholder groups.

1) Legal Authorities

Legal authorities include legal regulators who need XAl to
create, implement and enforce Al laws and regulations [45],
and legal auditors (a third-party “notified body” or internal
“authorised representative”) who need XAl to audit the Al
systems for legal compliance [41] (e.g., “Forensic Analyst” in
Fig. [T). For example, when drafting AI laws and regulations,
legal regulators need to specify what constitutes an adequate
explanation or transparency for Al decisions. Understanding
what XAI techniques could offer helps them set realistic and
enforceable standards that Al service providers must meet.
As a result, the legal auditors must examine the explanatory
information by XAI techniques against those legal principles
to report compliance and give recommendations. When Al-
related mistakes happen, legal authorities need XAl to identify
who is accountable for the erroneous decisions.

While the legal frameworks for 6G-specific XAl are
still in a nascent stage, legal authorities can consider the
existing general regulations to derive legal principles on
agency, privacy, security, and safety for XAl in 6G. Examples
may include Al-specific regulations such as the EU Al
Act [41] and General Data Protection Regulation [46],
telecommunications regulations such as ITU standards and
FCC guidelines, ethical guidelines and soft law such as OECD
Al Principles [47], IEEE Ethically Aligned Design [48]],
sector-specific regulations such as financial and healthcare
regulations regarding the use of Al, national Al strategies, and
international collaborations and frameworks such as Global
Partnership on Al [49].

The requested information by legal auditors to understand
Al in 6G can be in the form of a well-documented quality
management system containing written policies, procedures
and instructions such as regulatory compliance strategies, de-
sign and development procedures, data management systems,
risk management, post-market monitoring, incident reporting,
communication protocols with authorities, and record-keeping
(Article 17, EU Al Act [41]]).
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TABLE 1: Stakeholder-centered XAl specifications summarized based on literature (Who: relationship with AI, Why: the
reason for XAI, What: explanatory information, How: XAI approaches to generate explanatory information)

Legal Authorities

End Users

Service Providers

Who

set and enforce Al laws and regulations;
audit Al for legal compliance.

directly or indirectly use Al

develop, deploy and maintain Al

Why

prescribe responsibility, audit conformity
and enforce accountability

trust

everything left plus optimization, debug-
ging, and maintenance etc.

What

written policies, procedures and instruc-
tions such as regulatory compliance
strategies, design and development pro-
cedures, data management systems, risk
management, post-market monitoring, in-
cident reporting, communication proto-
cols with authorities, and record-keeping

feature-based (feature attribute, shape
and interaction), example-based (simi-
lar, typical and counterfactual examples),
rule-based (decision rules and trees),
supplementary (input, output, dataset,
performance metrics)

everything left plus saliency maps, fea-
ture importance scores, counterfactual
explanations, attention visualizations, sur-
rogate models, etc.

How

quality management system, technical

personalized interactive user interface

everything left plus (scope) global and

documentation

local approaches, (stage) ante-hoc and
post-hoc approaches, (example) counter-
factual, influential instances, adversarial
and prototype-criticism

2) End Users
End users are the consumers of Al-powered services within
the 6G network and require understandable explanations to
build trust in AI decisions that directly affect them (e.g.,
“Consumer” and “Business User” in Fig. [T). Gaining a user’s
trust relies on three pillars 50|, i.e., ability, benevolence, and
integrity, in addition to the user’s propensity to trust. Ability
refers to the functional performance of Al systems, which can
be reflected by explanatory information such as accuracy and
confidence in Al predictions. Benevolence means the extent
to which the Al systems are seen as genuinely concerning the
end users’ welfare, which can be influenced by explanatory
information such as decision trees in safety, security or
privacy-concerned scenarios [S1]-[53]. And lastly, integrity
refers to the user’s belief that Al systems consistently follow
a set of principles or values, which is closely related to legal
conformity.

Considering the diverse backgrounds and preferences of
end-users, [43] identified 12 end-user-friendly explanatory
forms in four categories: Feature-based explanations (e.g., fea-
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ture attribution, feature shape, feature interaction), Example-
based explanations (e.g., similar examples, typical examples,
counterfactual examples), Rule-based explanations (e.g.,
decision rules, decision trees) and Supplementary information
(e.g., input, output, dataset information, performance metrics).
To facilitate this, interactive user interfaces can be developed
to enable users to explore and customize the variety of
explanatory information forms at different depths [54], [S5].

3) Service Providers

Service providers are those who deploy, operate, and maintain
Al services in 6G and need explainability to understand, pre-
dict, control, debug and improve the Al-enabled components
of their systems (e.g., “Network Engineer” in Fig. [T). For
example, network service providers may 1) work on the data
mining and intelligent control layers using XAI to diagnose
causes of incorrect decisions by Al models [[56], 2) use XAl to
enhance the performance of the network, manage operational
risks, and understand the relationships between the input
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data or the training parameters and the learning efficiency,
as well as signal the presence of biases, and 3) use XAI to
better understand network maintenance and monitoring [30].
In addition, service providers also need explainability to
facilitate end-user trust and legal compliance.

As a result, service providers are responsible for not
only generating explanatory information for their own (e.g.,
saliency maps, feature importance scores, counterfactual
explanations, attention visualizations, and surrogate mod-
els [44]) but also presenting that information in ways
understandable and legally compliant for end users and
legal auditors. To generate low-level explanatory information
(e.g., mainly visual, numerical or statistical features that
require the expertise of the Al systems to understand) for
improving the Al services, service providers may directly
adopt the existing XAI approaches for general Al [44]
or adapt them in the 6G application context. To generate
high-level explanatory information (mainly natural language
that requires minimal expertise of the Al systems), service
providers may adopt legally compliant quality management
systems and comprehensive documentation practices for legal
auditors and design personalized interactive user interfaces
for end users.

4) Discussion

Table [T] presents significant responsibilities for the 6G service
providers, including but not limited to, 1) communicating the
XALI capabilities to others (legal authorities and end users), 2)
collecting XAI needs or expectations of others, 3) generating
the appropriate explanatory information for others. Moreover,
the needs of XAl vary across network layers (i.e., edge, RAN,
core, and cloud):

o At the edge, where resource-constrained Al models oper-
ate on end-user devices and base stations, explainability
is crucial for end users to understand local Al-driven
decisions (e.g., personalized Al services). Legal auditors
may require localized compliance checks on Al privacy
and security.

e Within the RAN, explainability is essential for service
providers to diagnose performance bottlenecks and op-
timize Al-based network orchestration. Legal regulators
may also need explanations for spectrum allocation
fairness, ensuring non-discriminatory Al-driven network
policies.

e In the core network, where Al-driven traffic manage-
ment, authentication, and policy enforcement occur,
interpretability needs are broader. Service providers
may require detailed insights into Al decisions affecting
routing, congestion control, and security monitoring,
relying on surrogate models, counterfactual explanations,
and dependency graphs. Legal auditors may focus on Al
accountability in cybersecurity, necessitating forensic-
level XAI capabilities to trace automated decisions

affecting network access control, encryption policies,
and service differentiation.

o At the cloud layer, where Al models are trained and or-
chestrated at scale, explainability is vital for both service
providers (e.g., debugging global Al models, ensuring
fairness, and improving network automation strategies)
and legal authorities (e.g., ensuring compliance with
regulatory frameworks). Explainability at this level
typically involves comprehensive documentation, model
interpretability reports, and traceability mechanisms.

As such, here we identify a lack of a common and
formal specification language on explainability to capture the
actual requirements across network layers and stakeholder
communities for the verification of XAI techniques.

IV. Challenge 2: Explaining Reinforcement Learning in 6G
Various approaches and taxonomies are proposed in the
literature discussing the explainability of RL as reviewed
in [57]-[61]. A more RL-oriented review study is given by
[60] where interpretability/explainability concerning different
levels of RL is discussed: (1) feature importance in taking
action for a given input state, (2) influential past experiences
of MDP and reward (objective) components affecting the
learning process for current behaviour, and (3) long-term
policy over time capturing an abstraction or summarisation
of the agents’ behaviour about subtasks and planning during
training to achieve the goal. A comprehensive study is
provided by [61] on exploring/exploiting interpretable models
for different components of RL including (1) inputs used by
agents for learning and decision-making, (2) transition model
of MDP, (3) preference models of reward function, and (4)
value function and policy directly or indirectly. An overview
of the state-of-the-art models with their interpretability
purpose is listed in Table

A. Direct Functional Explanations

Direct model explanations are challenging for deep neural
networks (DNN) due to the large functional space they operate
in. Attempts to use generalised functional descriptors to
collapse the dimensionality of the DNN into more tractable
expressions suffer from several issues:

1) Mapping to a discontinuous functional space

2) Loss of information

3) Human bias in interpretability

4) Lack of prior target function space resulting in large
function search space

For example, one might be motivated to use general func-
tional approximators (e.g., Gaussian Processes [|62[, Hyper-
geometric functions such as Meijer-G, Fox-H [63]]) via
Kolmogorov—Arnold Superposition Theorem (KST) to model
the activation functions as they can (with the right parameters)
be approximated to most functions. The combination of these
approximators is a form that is the same as itself, reducing the
function complexity of combining many activation functions.
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What we are effectively doing is asking for a DNN to
be represented in some kind of parametric model space,
where changing the parameters equates to searching on a
discontinuous function landscape - see Fig. [@A. We are bound
to lose information in the projection process. There may be
many functional representations that satisfy some kind of
information loss function, and hence we are likely to use
cognitive bias to select functions that are more familiar to
us or are easier to analyse/interpret. Finally, unless we know
what the target function will look like (e.g., we know from
prior convex optimisation solutions), the search space can be
extremely large.

A further critical challenge is how such direct modelling
approaches would work for more complex neural networks
such as convolution, recurrent, transformer, and RL architec-
tures (e.g., actor-critic, double duelling). It is worth noting
there are more complementary data-driven models where
a projection is made to a self-organising-map (SOM) with
temporal-difference (TD) error used to control for the process
[64], but the SOM is used more for improved performance
than explainability. Nonetheless, these methods in general
are limited to relatively small neural networks with prior
explainable model beliefs.

B. Symbolic Explanations

Traditional RL methods are inherently limited by the assump-
tion that tasks follow a Markov process, where the future
state depends only on the current state and action, not on the
sequence of events that preceded it. This assumption renders
traditional RL methods ineffective for non-Markovian tasks,
as they cannot naturally incorporate the necessary historical
context without making policy learning practically intractable
due to the exponential growth in state-space complexity.
Reward Machines (RMs) present a compelling approach to
address these challenges by explicitly modelling the structure
of tasks. By breaking down tasks into a series of sub-goals
and transitions, RMs facilitate the learning of policies that
are more interpretable but also better aligned with human-
understandable objectives. This task decomposition allows for
the accommodation of non-Markovian tasks by integrating
memory into the learning process. We summarise below the
key aspects of this neuro-symbolic approach to RL.

1) Reward Machine-based RL

Reward machines (RM) are finite-state automata enabling
temporal high-level abstractions that represent the reward
function and the structure of RL tasks in a compact form in
terms of a finite number of states and transitions between
them that are independent of the RL state and action spaces,
rendering them more applicable towards autonomy of ultra-
large networks. In the context of RL, automata have been
generally used to represent hierarchies of decisions made by
agents [65], [66], memory of the trajectories in partially
observable environments [67], reward functions and the
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structure (RM) of an agent’s task [68], [69], and encoded
policies by a neural network [70]]. This will induce more
interpretability for the policy taken and the level of learning
task performed by the agent. More specifically, RMs are
exploited toward encoding sub-goals of a goal-oriented
episodic RL task by two types of abstraction [71f], [[72].
The first one makes an abstraction of the original state space
into the automaton set of states by recognising the level
of task completion in terms of the initial launch (initial
state), sub-goals achieved (accept state), those yet to be
achieved (incomplete state) and not achieved by the end
of the episode (reject state). The second one abstracts the
actions into the set of sub-goals labelling the transition
edges as local objectives toward the subsequent automaton
state. Once the agent observes the next visible state of the
environment, the automaton state transition occurs when the
observables (if any) contributing to the sub-goals of the
task are perceived by the agent. The abstractions made by
this automata enable simpler learning of the whole task by
learning easier subtasks, better exploration by quick transition
to abstract states, generalisation to different similar or related
tasks by sharing common subtasks, and deal with partial
observability of environment and non-Markovian rewards by
providing an external memory for the agent.

To learn the RM described above, a sub-goal automata
learning task is first formed by considering the automata
model and a set of observation traces extracted from the traces
of visible states and actions. Second, the automata learning
task is represented by Answer Set Programs (ASP) [73]
which is a declarative logical programming language to
express knowledge and reasoning in the representational
form of logical programs inherited from computational
logic. ASP consists of a group of statements characterising
the objects of a domain and their relations, and the set
of possible outcomes of ASP, called answer sets, are the
semantics of the program and reflect the agent’s beliefs
related to this program. Accordingly, various tasks can be
reduced to finding the corresponding ASP program and
their solutions as the answer sets of the respective ASP
programs. ASP solutions can be learnt by the Inductive Logic
Programming (ILP) system [74] and are so referred to as
Inductive learning of ASP (ILASP) [[75]], [76]. ILP enables
model developers to develop more verifiable machine learning
algorithms by practising logical programs as a universal
representation that are much easier to manipulate by pure
clausal logic changes. The agent in question in Fig. @B
applies an ILASP system [[75]], [76] to perform learning by
forming three components: (i) background knowledge, (ii)
hypotheses set, and (iii) examples from the ASP representation
of the automata model and observation traces, respectively.
Third, the inductive solution to the ILASP learning task is
released in the form of hypotheses or rules that comply with
the background knowledge and cover the context-dependent
examples. This solution is the minimal automaton, i.e. with
a minimum number of states and a limited number of edges

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/0JCOMS.2025.3563415

Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 2: Overview of the XRL methodologies

XRL XRL Method Ref Impact on RL performance Disadvantages Relevant
Purpose Stakeholder
Group
* Feature impor- L
) « Unable to capture the memory and summarisation of
tance e.g. SHAPLY « speed up learning and better . )
s . the behaviour and subgoals or planning ) .
) « DT using imitation  generalisation . . ) « Service providers
Action . . . « Not easily robust to changes in the environment or task
learning e.g. VIPER,  « simulatable, highly portable and Decision trees are not suitable for applications with » End users
DAGGER deployable approximate reasonin %
» Augmented MDP PP 9
» Requires combination with influential experience (tran-
« Convergence guarantees the " . . o
sition tuple) identifying approaches for a more insightful
correct decomposed values explanation of reward decompositions
Reward/Value RDF, VFF, DVN, « Simulatable and achieve aver- P ) L . P Service providers
) * Requires domain information about reward components
function QMIX, QTRAN, age reward comparable to the non- or to learning and is not suitable for post-hoc explain
i i i ui - xplain-
RM, LTL, Boolean interpretable models Zb'l't 9 P P
ili
algebra, DT y
« Simulatable and decomposable
« More intelligibility through temporal
. .g y g P » The policy summarisation may not be helpful for
and hierarchical abstractions o ;
Better exploration by a quicker distribution shifts Legal authorities
Policy ISA, TLdR, Abstract . P vaqa + learning the temporal abstraction structure is not 9
. transition between abstract states . » End users
(long-term policy graph o . scalable to the number of abstract states and their
) « Enables summarisation of policies -
behaviour) transition rules
to learn the shortest path toward the
goal
« larger generalisability and better » Require further verification by a human to identify
transfer learning mistaken influential experiences
* More effecti loration an -« learning the prt ilisti | or influence model of
Transition DT, FOL, GP. VAE, .c.>ee ‘ective exploration and data: eal |'g.1t ep obgbl istic, cau§a or influe cc.e odel o Service providers
) . efficient RL the transition model is computationally expensive
model and  object-oriented, Renderi tential d bil Graph ble t ; i at
* Renderin n m| -+ G re un re contin
MDP Graph-based (state- endering potential decomposabi aphs are unable to capture continuous state spaces

. ity of the environment structure
space, attribute) v v uet

and stochasticity of transition model accurately

between states, capturing the sub-goal structure of tasks.
The sub-goal automata learned in this way are referred to
as Inductive Sub-goal Automata (ISA) and can be further
exploited by RL algorithms to learn the policy conducting
the agent to achieve the goal [72] using Q-learning. This
can be performed in either a hierarchical manner (HRL) or
a direct RL manner. The hierarchical way is carried out by
first learning the policy over the set of available options in
an automaton state, followed by learning the policy of an
option (for an outgoing edge) that satisfies a sub-goal of the
task. However, in the direct way, a single option policy is
learned in a given automaton state that might not satisfy a
sub-goal of the task but ultimately reach the goal of the task,
and hence globally sounds to yield the best and fastest policy
to achieve the goal.

In addition to exploiting RM for RL, it can also be
interleaved with RL for iterative refinement of RM from
the experience of an RL agent. This can be done by first
checking if the current visible, terminal, and goal states of the
environment observed by the agent are correctly validated by
the current state of the automaton, and if not, then add it to
the respective set of observation traces (goal, dead end, and
incomplete) for subsequent relearn of the RM. If the accuracy

of the relearned RM is still unsatisfactory, then another state
is iteratively added to the automata set of states to enlarge
the hypotheses space that captures the rule of automata. It
should be mentioned that this way of learning RM is not
scalable to the number of automata states and edges. The RM
approach is also extended to the case where perceptions of
high-level propositional events from the environment are noisy
(probabilistic) [77]. Another extension is to the multi-agent
scenario where RMs of subtasks are individually learned in a
decentralised way to cooperatively guide the policy of agents
toward a common goal [78]].

Application in 6G Exploiting RMs toward symbolic RL
for next-generation 6G applications is a promising way to
address the high computational burden imposed by very
large state spaces when performing joint optimisation over
different layers of communication network as well as joint
communication, control, computing, sensing and localisation
(BCSL) required for broader connectivity over space-air-
ground networking [[79]. In this context, RMs can be leveraged
within each layer toward layer-wise interpretability of the
policies used to meet the respective goals of each layer and
also in higher layers to hierarchically explain the orchestration
of the functionalities performed interactively among layers.
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This can also be extended to capture the structure of the
sub-goals when addressing RL-based optimisation for 3CSL.
Additionally, RMs enable an interpretable framework to
deal with the partial observability of the communication
environment by capturing the memory of visible states of
the network, as well as the structure of tasks while taking
the reward function and policies into account for sequential
decision-making. Further discussions on the way RM can be
exploited toward this end for the network slicing use case
are provided in subsection [VIA]

2) Neurosymbolic approach

Neurosymbolic (NeSy) Al tries to bridge the gap between the
low-level connectionist approach of the “Neuro” component
for statistical learning from raw data and the high-level
cognitive and human-like approach of the “Symbolic" com-
ponent for reasoning [80]—[82]. The integration of these two
different areas of Al enables more efficient learning of data
structure and knowledge representation from data as well as
reasoning and explaining the learned experience in a form that
is understandable and interpretable by humans. The various
approaches with which these two components interact with or
incorporate each other give rise to different categories of NeSy
Al as described in [83]]. One categorisation proposed by [|84],
studies this integration based on learning for reasoning [85]],
[[86]], reasoning for learning [87], [88]], or joint learning and
reasoning. Further details and discussions on the current
trends of such integration and their respective challenges and
future opportunities can be found in [83]], [[89].

In Learning for reasoning, the Neuro component guides
the reasoning process by approximating the symbolic com-
putation [90]], assigning probability distribution on the base
knowledge [91]], learning relational reasoning with Relational
networks (RNs) [92]], learning first-order logical rules in the
form of weighted non-linear logic operators called logical
neural networks (LNN) [93]], learning symbolic representation
of unstructured data, structured knowledge graphs to further
improve the reasoning process by shrinking the search space
of the symbolic system. However, in reasoning for learning,
the symbolic component guides the Neuro part in various
settings by catering high-level symbolic knowledge to a
neural network that is involved in learning and decision-
making with the ultimate goal of enhancing interpretability
and reasoning, especially when dealing with mislabelled,
noisy, ambiguous data or complex applications of dynamic
environments [94]-[96] or facilitating efficient learning for the
Neuro component [97]. As this requires manual engineering
of the symbolic knowledge for the downstream task, known
as symbol grounding problem, there is a need for a joint
reasoning and learning where a combination of neural
network training and inference of symbolic knowledge from
data is performed by intermittent interaction between the
learning and reasoning [[88[], [98]], [99].
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In the context of RL, [100] provides a comprehensive
survey of such categorisation for NeSy integration in different
aspects of RL algorithms, including environment state space,
agent policy, and reward function. The NeSy RL has been
proposed to address the challenges of deep RL (DRL)
related to data-inefficient learning, poor generalisation to
similar tasks, lack of high-level processes for various types
of reasoning, and low human-comprehensibility for the
sequence of actions taken by the agent [85]. Accordingly,
deep symbolic RL (DSRL) was introduced by [85] in an
end-to-end architecture to learn low-dimensional high-level
symbolic state representations from the high-dimensional
raw data in the back-end for subsequent front-end symbolic
reasoning. DSRL is further extended by [86] to take into
account common sense priors for the assignment of rewards
and the aggregation of Q values. This is shown to achieve
faster learning and also higher accuracy than just Q-learning
and DSRL especially when trained on a simple environment
and tested on more complicated environments. This extension
can also offer a better balance between generalisation and
specialisation. [[101]] makes use of LNNs to train an RL policy
that can directly render interpretability by neural training of
logical functions. In addition to the representation perspective,
NeSy RL is applied for safe exploration of the state and
action space to allow efficient verification of the learned
policies [102].

[103]] proposes a relational deep RL framework that
leverages the relational reasoning of RNs and key-value
attention mechanisms to further build and aid autonomous RL
agents that can learn out-of-distribution tasks expressed by
temporal logic instructions. A neurosymbolic relational RL
approach, called deep explainable relational RL (DERRL), is
proposed by [[104] where deep neural networks learn symbolic
relational representations (in the form of logic programs)
of policies to extract interpretable policies while enabling
scalability under structural changes in the environment. A
similar approach is used by [[105] for a hierarchical RL (HRL)
where high-level symbolic relational representations (in the
form of ASP) of meta-policies over options are learned by an
ILASP system and further used to guide a pre-trained DRL
agent. [106] also considers learning a task-level relational
reasoning module for HRL. This can be considered as the
hierarchical extension of [107]] where neural logic machines
(NLM) [108]] are exploited to reason about policies in DRL
by combining differentiable ILP (DILP) and policy gradient
methods. Another direction of NeSy RL research is to extract
and exploit a finite state machine (automata) structure for
reward shaping, especially for sparse and non-Markovian
reward functions, toward a more effective DRL algorithm by
changing the reward with respect to different learning stages
over time [109]-[111]]. More details about NeSy RL can be
found in surveys [61]], [89]], [[100].

Application in 6G NeSy Al has been exploited in the
context of 6G for the following use cases:
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1) zero-touch network and service management (ZSM) to
capture the dynamics of wireless Internet of Everything
(IoE) environment for autonomous management of
communication and computational service decisions
using a directed acyclic graph (DAG)-based Bayesian
networks as an explicit explainer for the neural network-
based multivariate regression [112],

2) intent-based semantic communication to consider se-
mantic and effectiveness of transmitted messages, with-
out affecting their reliability, for integration of time-
sensitive autonomous systems in future generation of
communication networks. This will enable developing
intelligent end-nodes that can efficiently and reliably
communicate through a combination of knowledge
representation and reasoning with machine learning. A
Generative Flow network approach with DNN encoder
and decoder structure is used by [113] to learn the
probabilistic structure of the observed data at the
receiver emanating from an optimal transmit message
in form of a compact objective function.

3) provisioning-aware radio resource allocation by a gNB
to meet QoS requirements [[114]]. More specifically,
a Bayesian Graph Neural Network explainability ap-
proach is used to address an RL-based minimisation of
the physical radio resource over-provisioning and under-
provisioning while meeting the amount of requested
downlink traffic.

Explaining Reinforcement Learning is Challenging:
RL prospects into the future and explaining the
reasoning is often done through symbolic mapping
to known symbolic knowledge or belief heatmaps of
associated observation-action pairs.

C. Reward/Value, State Transition, and Policy Space
Verification & Inference

In many legal and regulatory cases where motivation, op-
portunity and capability to act are sufficient to prescribe
responsibility. As such for RL, we may only be interested
in limited explanations of what its motivations (rewards) are,
and/or what state-action mappings (policies) it is set to do.
As a primary party (e.g., network service provider), we would
have direct access to the reward or value function and policy,
and we can in real-time display these as a function of time
and events to assess performance.

For the reward/value function, the explanations can be
provided by decomposing the reward function, also resulting
in the decomposition of the value function, into several
components that can provide intuitions about the contribution
of various objectives to the final composite reward [115]. A
similar idea was also considered for the decomposition of
the value function in the context of cooperative multi-agent
RL to account for the individual contributions of each agent
in the joint value function, assuming it can be approximated

by factorization of less complex functions, referred to as
Value function factorisation (VFF) [[116]. Various algorithms
based on VFF include the value decomposition network
(VDN) [116], the Mixture of Q-values (QMIX) [117],
and the Transformation of Q-values (QTRAN) [118]]. The
decomposed variants of these algorithms, referred to as D-
VDN, D-QMIX, and D-QTRAN, are further proposed in [[119]
by incorporating RDF into the VFF to capture the contribution
of distinct reward components in the approximated individual
value function of each agent. This adaptation was additionally
improved in the complexity of the reward components per
agent by a multi-headed architecture that performs multi-task
learning of all reward components [[119]. A use case of these
algorithms was also studied to improve the key performance
indicators (KPIs) of codec adaptation in XR traffic.

This approach avoids trying to explain what the agent is
doing precisely but rather explains what motivates (rewards)
the agent to behave in a certain way (policy). In many
cases, we may wish to understand state transitions to better
understand the agent-environment interactions rather than
just the agent’s internal design (e.g., reward and policy).
This extrinsic explainability is essential to check the agent
is not only designed well but also interacts well. This
has been designed as explainable Q-learning for linear
controller systems so far and can be expanded to data-driven
problems [120]. Expanding some of these techniques to high
dimensional states for 6G could be a challenge at the resource
optimization level.

What becomes more challenging is if we are a secondary
party (e.g., ORAN orchestrator) and we must verify what the
policy and reward space is for a rApp/xApp. For example, an
innovator inserts a suspicious ORAN app and we must verify
whether the declared certificate is true. Here, we can use a
variety of inference or inverse learning methods to verify.
For example, we may set up a verification RL model that
uses the declared policy or reward to check the error between
them [121]] - see Figl[C. If the agent in question declares
what policy and/or reward functions it uses, the ORAN
would verify the declared model in question is performing
in accordance with expectations by minimizing the error
feedback. In an undeclared case, or when the above is not true,
the ORAN would use general functions (e.g., polynomials)
to try to infer what potential functions are being used via an
inverse reinforcement (IRL) policy or reward learner module.
Either way, the difference in output can be feedback to the
verification network as state (S) and rewards (R).

Another approach in XRL is through feature importance
where the most influential state features affecting the action
taken by the RL agent at each time instant are recognised.
This explanation can provide insight to service providers
and end users about the critical input contexts for making
decisions. A use case for this type of XRL is in radio resource
management (RRM) for V2X communication in the context
of autonomous vehicular networks [122] toward automotive
transportation. In this setting, vehicles communicate with
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FIGURE 4: Forms of XRL: (a) agent model projection to function space, (b) capture agent’s behaviour to meet the objectives
and sub-goals/subtasks with temporal abstraction, and (c) reward or policy inference approaches.

the help of a roadside unit (RSU) and optimise real-time
power control using a multi-agent DRL. The space for each
agent comprises the transmit power in the previous time
slots, direct channel gain to other vehicles, interference gains
of the current and previous time slots, and the signal to
interference in the previous time slot, which constitute a
state space of overall 2K + 2 dimension for a total number
of K vehicles. The explainability approach in this study
is based on SHAP (SHapley Additive exPlanations) values
for computing and ranking the feature importance scores to
reduce the size of state space and retraining the model using
the most significant state features that globally contribute
to the agent’s decision, and hence explaining the allocated
power at each time slot. The experimental results in [122]]
show that under the high mobility regime — which results
in low correlation between fading coefficients of successive
time slots— features of previous time slots have negligible
influence in the agent’s output and hence reducing the size of
state space by almost 70%. However, this might not always be
the case, and hence the characteristics of the communication
environment might allow for more important state features
to appear as the number of vehicles increases, which renders
the feature importance method computationally infeasible.
Most of the discussions provided on the explainability
techniques for RL are model-based such as decision-tree
(DT), reward machine, structured causal models, graph-based
abstractions for the policy and transition model of MDP,
and reward decomposition. It should be noted that these
models still need to be learned with interpretable methods
in most cases to capture the trajectory of experiences in
an RL task. The most famous model-free techniques which
are not specific to (but can be also used in) RL are the
feature importance-based techniques such as SHAPLY that
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computes the highly influential state feature for a given action
taken at each time step. Other model-free techniques include
post-hoc explainability techniques such as linear interpretable
model-agnostic explanations (LIME), saliency maps, and
conversion of policy into interpretable formats. The model-
free approaches that can be considered more specific to RL
are the “interpretable off-policy evaluation” and “influence
functions” to identify the most influential experiences of an
agent with respect to the estimates of value function [60].

V. Challenge 3: Causal Understanding for Improving
Explainability and Performance

The explainability approaches discussed in the previous
sections can be inadequate as they only expose variable
correlations and thus misinterpret confounding factors and
complex causal chains present in those dynamic environments.
Causal analysis shows a promising pathway addressing this.
Causal analysis can not only help to optimise the Al models
but also produce a deeper understanding of both the Al
models and the dynamics of the networks.

A. Causal Analysis

Causal analysis is a statistical framework which allows system
analysis from three different perspectives: observational,
counterfactual, and interventional [123[|-[126]]. Traditional
probabilistic approaches are mostly focused on the first
observational level; observations of the system variables
are used to infer a probabilistic model of the system,
providing some explainability of it. The counterfactual and
interventional levels opened by causal analysis allow the
understanding of how such probabilistic models would be
modified under hypothetical changes in the variables. The
counterfactual level analyses how a past sample observation
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would have changed if some system variables had a different
value, while the interventional level considers how the model
would change if some modifications were forced on it, such
as fixing a variable to a certain value. In that sense, causal
analysis does not produce a single probabilistic model but a
continuous stream of probabilistic models (the observed one
as well as any possible variation of it). Common approaches
to hypothetical changes such as sensitivity analyses offer a
correlational understanding of the changes in variables but are
not able to distinguish confounding factors and since they do
not provide complete probabilistic models they are not able
to produce analysis on specific past samples; i.e. they answer
how in average some variables seem to affect others, while
causal analysis can answer how, for a particular observation,
changes in variables would have affected others. In other
words, a sensitivity analysis offers a static probabilistic model,
while a causal analysis offers probabilistic models for each
past or hypothetical scenario.

Causal analysis uses structural causal models as a main
tool to represent such scenarios. A structural causal model is
defined by a series of structural equations which define how
the different variables of the system relate to each other and
any additional sources of variation such as exogenous noise.
The structural causal model induces a graphical representation
which is visualised using Directed Acyclic Graphs (DAGs)
[123]]-[[126]. These diagrams offer, among other benefits, a
clear visualisation of the analysed system’s causal structure,
showing how the variables relate to each other. They also
make it easy to understand for example which variables would
need to be intervened to produce changes in specific variables
of interest.

Table [3] shows examples of different causal representations
that can be used when modelling the causality of a 6G
network, the nodes of a graph may represent for example
performance and quality indicators of the 6G network,
allowing the understanding of how the performance indicators
cause changes in the quality (see Figure 6 in [127]]). Another
possibility is that the causal model represents the network
from the AI model perspective. In this case, the graph
nodes may categorise the information into latent variables,
observations, and interventions (see Figure 2 in [128]]). A
different possibility is to perform a causal analysis focused
directly on the AI model. In this case, for RL the graph
nodes may represent the states, actions, and observations (see
Figure 1 in [129]).

Causal discovery techniques [130]—[134] produce such
diagrammatic causal representation from observational and
interventional data. Estimation techniques allow the quantifi-
cation of the effect of the causal relationships to obtain
the complete structural causal model, which enables the
calculation of specific probabilities using causal inference
methods [135]], [[136].

Recently, causal analysis is increasingly used in connection
to machine learning, to improve the explainability of such
techniques but also to make them more efficient. The interplay

between the two approaches is what is called causal machine
learning [[137]-[140].

Traditional supervised machine learning works on the
observational or associational level, using the data to learn
from its correlations to solve the supervised tasks. Regarding
its efficiency, this leads to strong limitations such as the dif-
ficulty for such techniques to distinguish between causal and
confounding information [[138]], [141]]-[144]]. To overcome
this problem, different causal machine learning approaches
can be applied, going from a causal feature selection that
preselects the causally relevant information for the machine
learning models to work on to causal architectures of machine
learning models which already have as a learning objective the
distinction between causal and non-causal information [[145]]—
[148].

On the other side, beyond the efficiency argument, causal
machine learning models are more explainable. The improve-
ments may come, for example, from using more explainable
features or feature selection [149], or from using architectures
and representations which are explainable per se [[150], [151].

B. Causal Analysis for 6G Optimisation and Explainability
As was presented in the previous section, causal analysis
allows the creation of models of complex 6G networks that
help understand how their variables relate to each other
causally. Next, we review the key causal analysis approaches,
then detail some use cases and their impact on stakeholder
groups, and finalise by reviewing recent work in causal Al
in communication networks.

1) Native Al Network Optimisation

Prior or real-time causal understanding can be used to simplify
the use of native Al operating in 6G networks and make it
explainable by construction. There are many examples which
we give insight into below.

Transfer Learning in Parallel Channel/Traffic: In
channel estimation and traffic prediction amongst nearby
Base Stations or Radio Units (RUs), transfer learning can be
applied between edge prediction models such as RNNs and
GPs [152]. While traditionally it would be required to train
multiple parallel models naively assuming the independence
of the data sources, causal understanding between channels
or coverage areas allows for reducing their multiplicity. For
example, if the data from a BS/RU is shown to be the
cause of the data for others (e.g. due to users moving from
one spatial location to another), causal directional transfer
learning could be applied between such sources of data instead
of training multiple independent models or guessing which
direction the causality lies using correlation approaches. In
Fig[5] we can see that future ORAN xApps may hold these
parallel prediction models in Distributed Units (DUs), and
the causal inference as a non-real-time rApp may be held
in the Centralised Unit (CU) to indicate which direction the
causal transfer learning should take place.
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TABLE 3: Examples of Causal Representations for 6G Networks

Focus of the Causal Analysis

Nodes of the Causal Diagram

Edges of the Causal Diagram

Network .
numbers, QoE metrics)

Network variables (e.g. downlink traffic, user

Network causality (e.g. performance metrics

vs. quality of service causality)

Network from Al model perspective

Latent variables, observations, interventions

Causality between network and Al model

Al model RL states, actions, observations Intra-model causality
O-RAN Architecture rApp: Causal Inference
causal inference Technique Assumptions
CU. outcome
Near Real- . Predictability Linearizable
Time RIC Causal Improvement (Pl)
|nference Conditional mutual | Transfer Entropy
information (CMI)
ocu- - 4 General Causal Model in CU
cP :\ with Unknown Confidence Convergent Cross Nonlinear
| 4 N Map (CCM) Embedding
. LAY
DU: N prediction outcome
Traffic N
. . I . . .
Prediction ! - xApp: Causal Driven Prediction: RNN & GP
o-CU- | *, o-Cu-
cp | \ uP LSTM/| +/LSTM Causal GP Feature
! \ Embedding
TN ~
RU: RU: RU: 23
. . . £
O-eNB Air Air Air © O
Interface Interface Interface STML s

FIGURE 5: Causal learning rApp drives LSTM and probabilistic GP prediction tasks as xApps.

Global Cross-Layer Optimisation: The newly integrated
services (that are previously siloed) such as integrated sensing
and communications [153|]-[155], shared native Al-as-a-
Service [[156]], using mobile drone relays to expand and
improve coverage [157]-[159], etc. require cross-layer and
cross-module global optimisation, leading to a dimensionality
explosion challenge, especially for RL. Causal Al can improve
efficiency by reducing the search space in the training of
network-wide cross-layer global models. This can reduce the
dimensionality explosion problem in 6G [160]; if some of
these data sources are proven to be causally redundant or
even confounding information, they can be excluded from
the training processes.

Causal Learning is Crucial: causal learning allows
us to understand why something has happened—
leading to more reasoned and efficient downstream
AI/ML implementation.

Causally Informed AI/ML Models: Causality may also
be used in the design and architectures of the Al models
themselves to improve their efficiency and explainability, as
it was mentioned in the previous section. Some examples
in other domains are the following: [[I50] propose an
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autoencoder with an internal causal layer that disentangles the
latent variables. While traditional autoencoders produce latent
variables that may have no semantic or causal meaning (since
they use a commonly incorrect assumption of uncorrelated
latent variables), here the latent variables are the causal
variables of the data (which are learnt together with the causal
model of it). [[148]] propose a model with a causal training
objective whose aim is to distinguish in the inputs the causally
relevant information to produce the correct outputs. Similarly
is done in the work by [[146] in an RL case. [145] propose
models with specific causal architectures and objectives.

2) Causal Al Use Cases and Stakeholders in 6G and XAl
Techniques Comparison

In the following, we motivate the use of causal approaches in
6G networks by presenting specific use cases and comparing
them to other explainability methods. We illustrate the advan-
tages of the causal framework through scenarios involving
various stakeholders—Ilegal auditors, service providers, and
end-users—and highlight technical aspects relevant to 6G
networks. The stakeholder groups and related applications,
which we detail below, are as follows:
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1) Human forensic post-hoc analysis by service providers
and legal auditors

2) Human real-time analysis for resource management by
service providers and end-users

3) Machine native Al network real-time optimisation

Next, we present example use cases related to them. Table ]
summarises the following content.

Bayesian Approaches in Spectrum Management: [[161]]
analysed the use of deep learning in channel management
where the management optimisation was performed through
a Bayesian technique which provides a certain degree of
explainability, since it creates a statistical model of the system
based on the knowledge about it. While Bayesian approaches
focus on the relationship between the prior knowledge and
the posterior estimated from it, causal models are focused
on the causal relationship between the system variables,
independently of our knowledge about it. Causal analysis
does not exhibit a sensitivity to the priors [[162]. This may
represent an advantage for certain explainability aspects. For
example, consider a scenario of a critical service requiring a
high-quality connection [[163] (i.e. ultra-reliable low latency
communication, high spectrum efficiency, etc), such as a
vehicle-to-everything intelligent traffic safety application. In
this scenario, a legal auditor stakeholder may be investigating
an accident produced by the failure of the application due to
a failed modelling of the channel requirements. The auditor
should not consider explanations focused on -and thus highly
dependent on- the prior knowledge observed up to that
moment, but used instead explanations with a focus on the
true causal mechanism of the system and how it affected the
outcome. Thus, a causal approach may fit better the legal
auditor explainability requirements.

In [161], the Bayesian approach is used as a way to
optimise over unknown and latent parameters given some
observed data in a channel estimation use case. In that sense
is a more efficient approach than blind optimisation which
disregards using the modelled priors. However, it is still less
efficient than using in addition the knowledge of the causal
relationship between the variables [[164], which would be
disregarded in a standard Bayesian optimisation. This latter
work shows how a causal approach can be in some cases
complementary to other approaches to explainability.

Counterfactual Explanations in Resource Management:
Another relevant application of Al in 6G is resource manage-
ment [[165]]. This includes aspects such as massive channel
access, interference management, hand-off management, IoT
coverage extension, etc. [[166] consider multi-modal traffic
classification using deep learning and apply SHAP techniques
[167] for its explainability. These allow them to explain which
set of input features contributes the most to the confidence
probability value associated with the traffic of a given mobile
app. It works by comparing the outcome of the model with
the outcome of a model where a particular feature is withheld,
analysing the average of this procedure for all the features.

While these explanations rely on some kind of counter-
factuality, their use is very limited. The technique only
analyses the local counter-factuality of the presence or
absence of each feature concerning the particular outcome
observed. In contrast, complete causal models can obtain
the result of any counterfactual question over any outcome.
That is, the counter-factuality is not just a binary question
over the features’ presence but allows the learning of how
any particular value of each feature would have affected
the results. Additionally, in a causal approach, this is done
by relying on a global causal model and not just a local
approximation of it. For example, in the case analysed in the
previous work, we can consider the perspective of an end-user
stakeholder wanting to know why their phone connection
is experiencing problems. Using the techniques proposed in
the article may produce a diagnostic pointing to the traffic
of a specific app, which may lead the user to deactivate
completely the app driving this process.

A complete causal model may produce instead a more
complex counterfactual explanation, which may alternatively
lead to a rebalance of the traffic of various apps, which may
allow keeping all of them active, instead of producing a single
binary change, which may be a more desirable scenario for
the end-user stakeholder.

Requirement Forecasting in Edge Computing: The
last AI application in 6G that will be considered is the
edge computing case. [168] study a scenario where real-
time video streams are shared by vehicles to assist in traffic
manoeuvres. In this scenario, the video streams are shared
by an application running at the edge of the network. The
Al application forecasts the Quality-of-Experience (QoE)
perceived by the users based on QoE and QoS metrics as well
as other information such as cell usage. The authors show how
federated learning outperforms local or centralised learning.
In this work the explainability of the Al models is produced
using fuzzy rules [[169]. Given this use case, we can consider
a scenario where a service provider stakeholder uses the edge-
AI models to optimise the QoE based on the previous data.
Common induction algorithms for fuzzy rules are based on
correlations, and thus this scenario may lead to misidentifying
confounders as causes of the QoE. A causal analysis approach
would on one side eliminate such errors, and on the other side
would offer the service provider the specific interventions that
can be executed to maximise the QoE when it is forecasted
to be below a certain threshold. This possibility of operating
both at the observational and interventional levels is unique
to the causal framework. Authors such as [[170] have shown
how to combine causality with fuzzy rules in such cases.

In summary, the presented cases show how a causal analysis
framework may benefit different stakeholders of the 6G
network, from legal auditors to service providers through
end-users. Some of the advantages include the possibility
of asking counterfactual questions over the system analysed,
being able to design specific interventions to increase the
efficiency of the network, and a more robust and complete
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TABLE 4: Examples of Causal Al Use Cases and Stakeholders

Application Use Case Example

Stakeholder Example Causal Approach

Spectrum management to ensure
high-quality connection for a
vehicle-to-everything intelligent
traffic safety application

Monitoring, access, and management
of the spectrum

Post-hoc analysis by legal auditor Causal discovery

Resource management (massive channel
access, interference management,
hand-off management, loT coverage, etc.)

Smartphone app resources
management for connection
diagnostics

Real-time analysis for bandwidth

Counterfactual analysis
management by end-user

Edge app sharing vehicles real-time

Edge computing video streams to assist in traffic

manoeuvres

Causal inference for intervention
estimation analysis

Machine native Al network real-time
optimisation by service provider

global explainability. As was shown, a causal framework can
be applied on certain occasions in combination with other
explainable techniques.

3) Recent Work in Causal Al in Communication Networks

[171] showed the possibility of increasing the efficiency
of the energy allocation of the communication channels.
They verified the causality between channels and used this
common causal connection to better forecast their energy
requirements. [[127] demonstrated the possibility of improving
the user experience of the users of the network through the
causal modelling of the relationship between performance and
quality indicators. Causal discovery techniques were used
to build the DAG of such variables showing their causal
relationships, which were embedded in a graph attention
network. As we mentioned above, such causal knowledge
can also be used to infer which variables of the network
have to be intervened to maximise the effect on the user
experience. [|172] analysed how to use causality for a better
operation and maintenance of the network by better predicting
its conditions of use. Causality was applied to communication
data analysis to select the features to use in an LSTM model
to predict future call volume.

The exponential expansion in the amount of data expected
in 6G networks together with the embedding of machine
learning models at all network levels is leading to a recent
increase in studies specifically targeted to causality and
machine learning for 6G. [173]] applied causal discovery
approaches to identify causal factors determining network
performance patterns in mobile wireless networks. As an
example of their results, in their datasets they found the
uplink throughput to be the most relevant causal factor
for the performance and a causal relationship between the
number of reserved signalling resources in the physical uplink
control channel and the uplink throughput. In a very recent
work, [174] developed a very comprehensive vision of the
advantages and principles for a causality-driven Al-native
wireless network, including RL models. They identified chal-
lenges in the current use of Al in wireless systems, showed
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the advantages of the use of causality illustrated by use cases
such as dynamic channel tracking, digital twin modelling,
and ISAC, and proposed a causal inference-based framework
for wireless control problems. In [175]], some of the previous
authors used causal representation learning concepts to design
reasoning-driven semantic communication networks. This
work also included proposals for reasoning capacity measures
for computing and communication resources. The authors
proposed definitions, visions, and building blocks of an end-
to-end semantic communication network.

These previous studies justify the need for and advantages
of further work on causality in 6G networks.

Examples of causal analysis applications for Al-driven
6G decisions include:

e increased performance in channel estimation
and traffic prediction using causality for transfer
learning between the Al estimation/prediction
models;

improved performance in training global cross-
layer AI models for integrated sensing and
communications by using causality to reduce
the search space of redundant/confounding data
sources;

causal post-hoc analysis of Al-driven 6G deci-
sions of spectrum management in ultra-reliable
low latency communications;

better performance of real-time bandwidth man-
agement by estimating counterfactual Al-driven
decisions of channel access;

better resource forecasting in edge computing
using causal Al for improved estimation of QoE.

VI. XAl in 6G Use Cases

In this section, we focus on two key 6G use cases—network
slicing and autonomous robotic systems—where XRL and
causal analysis play an essential role in addressing real-
world deployment challenges. These use cases are selected
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based on their criticality to 6G infrastructure, their reliance
on Al-driven decision-making, and the pressing need for
interpretability in their operations. Network slicing is key
to 6G’s efficient resource management, but opaque Al
policies can undermine compliance, SLA assurance, and trust.
Similarly, UAV-based robotic systems enhance adaptive con-
nectivity but require transparent decision-making for safety
and reliability. While many 6G applications benefit from
XAI, these two domains serve as representative examples
where the integration of XRL and causal reasoning is not
only beneficial but essential for real-world viability.

A. Network slicing

Network slicing, a key enabler for tailored service delivery
in 6G networks, represents a complex resource allocation
challenge that has been significantly enhanced through Al-
driven approaches. As a combinatorial optimization problem
[176], it has evolved significantly through DRL applications,
demonstrating substantial improvements in various aspects
of network management. Pioneering studies showcase DRL’s
effectiveness: [[177]] developed an intelligent slice admission
control framework, while [178]] and [179] achieved revenue
improvements of up to 54.5% and 17% respectively through
efficient slice orchestration. Recent advancements have further
enhanced this domain, with [[180] proposing a dynamic
RAN slicing model that categorizes services into throughput-
oriented, delay-sensitive, and delay-throughput-tolerant types
while addressing system stability across heterogeneous traffic
demands. Complementing this work, [[181]], [182]] introduced
a two-phase approach combining optimization theory and
DRL to balance eMBB data rates with URLLC reliability
constraints. This framework effectively manages the challeng-
ing trade-off between service types, demonstrating improved
eMBB reliability while maintaining URLLC performance
through dynamic resource allocation. Additional contributions
include the EXPLORA framework [183]], which enhances
explainability in Open RAN systems, and autonomous slicing
refinement algorithm [184], achieving up to 100% user
satisfaction and 80% resource utilization.

While RL and DRL have demonstrated significant success
in addressing sequential decision-making challenges in net-
work resource management, their inherent opacity presents
substantial implementation barriers. The emerging XRL
approaches provide insights into environmental perception,
motivational factors, and Q-value computations [[185]], making
them particularly crucial for practical deployment in network
resource management scenarios.

XRL has been pivotal in addressing transparency challenges
in resource allocation. For example, [|186] proposes an XRL
framework for 6G networks that enhances both performance
and interpretability. Their framework introduces an intrinsic
interpretability approach that combines SHAP values with
an entropy mapper mechanism. The Al model encompasses
average SNR values, traffic volume, and remaining capacity
metrics in its state space, while determining discrete allocation

of Physical Resource Blocks (PRBs) through its action space.
A distinctive feature of their approach is the composite reward
mechanism that integrates traditional SLA-based rewards
with an XAI reward derived from SHAP importance values
and entropy calculations, guiding DRL agents toward more
interpretable resource allocation decisions. The framework
employs multiple XRL agents to allocate physical resource
blocks across different network slices (URLLC, eMBB, and
mMTC) while meeting specific SLA requirements. The SHAP
values generate probability distributions over state-action
pairs, while the entropy mapper calculates uncertainty metrics
for selected actions, using the inverse maximum entropy
as an XAI reward component. Their experimental results
demonstrate the XRL approach’s superiority over traditional
RL baselines, achieving improved latency performance (1.9
ms versus 3.5 ms at the 50th percentile for URLLC)
and reduced dropped traffic rates (5.2% versus 7.9% for
mMTC). This research represents one of the first initiatives
to incorporate explainability directly into the DRL training
process rather than using it as a post-hoc analysis tool.

The evaluation of XRL techniques in network slicing
requires specific metrics that address both the performance
and the explainability aspects. Current research highlights
four essential metrics for comprehensive assessment: (1)
SLA Violation Rate, which measures how well XRL systems
maintain promised service quality across different slice types
(eMBB, URLLC, mMTC), providing insight into fault de-
tection and service reliability [[187]]; (2) Resource Utilization
Efficiency, assessing how optimally network resources are
allocated, with evidence suggesting that better explanations
lead to more efficient resource management; (3) Adaptation
Responsiveness, evaluating how quickly and effectively XRL
systems can reconfigure slices when facing changing network
conditions and traffic patterns [[188]; and (4) Explanation-
Action Alignment, measured through SHAP-alignment scores
and the Slice-Trust Index, which quantifies how well the
system’s explanations reflect its actual resource allocation
decisions. The Explainability-SLA Balance (ESB) metric
further enhances the evaluation by measuring the trade-off
between improved transparency and potential performance
impacts [[189]. These metrics offer a structured approach
to evaluate XRL techniques in network slicing, addressing
both technical requirements and the growing demand for
trustworthy Al in telecommunication systems.

RM (discussed in subsection [VHB) is another approach
to iently incorporate interpretability into RL tasks, which is
independent of the RL state and action spaces, making them
suitable for guiding RL algorithms in ultra-large networks.
RMs can be exploited for the problem of network slicing
in two (or multiple hierarchical) levels. The higher level
RM in xApp near-real-time RAN intelligent controller (NR-
RIC) explains and guides the policies made for allocation
of PRBs across various slices (eMBB, uRLLC, and mMTC)
over the longer slice-time (of multiple time-slots), and the
lower level RM in real-time RIC explains the decision made

VOLUME ,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/0JCOMS.2025.3563415

—IEEE IEEE Open Journal of the

ComSoc communications Society

6G xApp Controller sits in
DU to provide robot control
based on observed state x,

Drone/Robot controlled by
remote communication
signal u,

/" Enhanced Q-learning

6G rApp Counterfactual Reasoner
sits in CU to provide counterfactual
arguments on the causal
mechanisms that cause problems
| in stability, and state estimation.

Q-Learning
V' “If the matrices ® and Q had been full rank in each
Linear System : episode i, then the Q-learning and DMDc methods
i would remain stable”.

Xpr1 = Axy + Buy, ; V' “If the number of steps k had been au, then the Q-
Dynamic Mode E learning ar,z,d DMDc estimfltes wotldd be close to their

! 9.0 q ' real values”. Here a € N is a scaling factor.
j Decomposmon with (_?_J v’ “If the matrix estimate S had been S, then the Q-
uy, : Control (DMDC) ] learning algorithm would accurately estimate the ma-

b /,’ trices A and B”.
I { """"""" Y,

A,B

FIGURE 6: Remote wireless control of safety-critical robot/drone using Q-learning in the DU of 6G ORAN, where XRL is
used to perform counterfactual reasoning in CU to ensure stability and performance accuracy - details in [[190].

by admission control within a slice to accept or refuse a
service request upon arrival during the shorter time-slot. This
can subsequently guide the PRB scheduling policy over the
admitted requests of the slice to meet the QoS requirements.
The RM approach can provide modular explainability and
also at a long-term policy level as well as reward level to
explain the optimal PRB allocation policy over slices that
can guarantee successful service admissions and minimise
the denial of services in the network and failure due to the
limited resources.

The above XRL application examples deliver substantial
benefits across multiple stakeholder groups. For network
service providers, these methods significantly enhance oper-
ational efficiency by providing transparent, interpretable in-
sights into resource allocation and admission control decisions.
The intrinsic explainability embedded in these frameworks
allows providers to proactively manage network resources,
mitigate potential bottlenecks, and ensure compliance with
SLAs, ultimately improving resource utilization and reducing
operational costs. Legal auditors gain from the modular ex-
plainability offered by RMs at multiple hierarchical levels, en-
abling precise monitoring and auditing of network decisions,
thus facilitating regulatory compliance and strengthening
governance in network management practices. End-users
directly benefit through enhanced QoE, as demonstrated by
reduced latency and lower service denial rates, fostering
greater trust in service reliability and performance.

B. XRL for 6G with Autonomous Robotic Systems
6G networks are poised to integrate autonomous robotic
systems, such as UAVs, to enhance connectivity in under-
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served regions. These UAVs can function as mobile base
stations or communication relays, dynamically extending
network coverage and improving QoS [191], [192]. However,
deploying autonomous UAVs at scale requires efficient
decision-making frameworks that are both optimized for
performance and safety, in addition to being transparent
in their operations. XRL addresses these concerns by en-
suring that UAVs make decisions that are interpretable and
trustworthy (with provable sub-linear convergence properties
and control stability guarantees) for various stakeholders,
including service providers, regulators, and end-users [193],
[194]. Such approaches, however, will need to be adapted
to specific 6G contexts to ensure practical applicability and
efficiency.

To ensure seamless service provision, RL-driven UAVs
can dynamically adjust their flight paths for optimal resource
allocation and service efficiency [[195], [196]]. RL techniques
also facilitate intelligent task offloading and resource alloca-
tion, ensuring timely data transmission without overloading
communication channels [197]. By leveraging DRL and multi-
agent RL (MARL), UAVs can autonomously optimize their
decision-making processes to enhance network reliability
[[195]], [196]], [198]-[201].

Despite significant advancements in RL-driven UAV
deployment, the incorporation of explainability remains
relatively limited. Several recent studies have explored
different XRL approaches to improve transparency and
trust: [202] employs Evolving Behavior Trees (EBTs) via
genetic programming to enhance system interpretability by
integrating explicit safety behaviours; [203] utilizes SHAP
values to provide post-hoc explanations of decision-making
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processes; [204]] applies Saliency Maps to identify critical
visual input regions influencing a Deep Q-Network (DQN)
agent’s actions; [205]] also uses SHAP-based feature attri-
bution to enhance transparency; [200] introduces human-
UAV teamwork with interpretability and transparency through
human-agent interaction; [207] explores constrained RL
through probabilistic inference for intrinsic interpretability in
high-stakes deployment scenarios.

An emerging perspective in XRL involves counterfactual
reasoning, which enhances interpretability by identifying
causal relationships in decision-making. This approach en-
ables forensic diagnostics by answering “what if” questions,
allowing stakeholders to understand the rationale behind an
agent’s choices. Counterfactual reasoning has been applied in
Q-learning for networked control, providing powerful tools for
fault diagnosis and prevention [208]]. Recent studies, such as
[190], integrate counterfactual reasoning with dynamic mode
decomposition and control algorithms for state-transition
function estimation, improving the robustness of explanations
without requiring hyperparameter tuning.

Integrating XRL and counterfactual reasoning in 6G UAV
networks benefits key stakeholders in several ways:

e Service Providers XRL enables flexible and optimized
resource management, ensuring high QoS while main-
taining network efficiency. Counterfactual explanations
improve system debugging, facilitating better decision-
making.

e Regulators Explainable UAV trajectory modifications
ensure compliance with network and safety standards,
making regulatory audits more transparent and effective.

e End-Users Enhanced transparency fosters trust in UAV-
assisted communication services, ensuring reliable and
interpretable connectivity solutions.

The synergy between XRL and causal Al within 6G
infrastructure offers promising avenues for developing in-
telligent RAN controllers that can integrate, coordinate, and
manage Al-enabled subsystems like UAVs [209]]. By ensuring
explainability and accountability, these technologies pave
the way for secure, efficient, and stakeholder-friendly UAV
operations for future 6G networks.

VIl. Conclusions & Future Research Areas
Future telecommunications are set to increasingly integrate
critical services into their network infrastructures, raising
significant trust and safety concerns. The AI/ML modules
orchestrating these critical services will inevitably rely on
DRL to process multi-modal requirements datasets and make
semantically modulated decisions. Despite its potential, DRL
presents a critical challenge: its lack of explainability, which
remains a key area of concern for the research community.
First, we reviewed how the explanations must cater for
diverse telecommunications stakeholders, including network
operators, service providers, and end-users, each with unique
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goals and operational practices. Second, when DRL lacks
prior models or established frameworks to guide the creation
of meaningful explanations, we reviewed key emerging
research approaches to help tackle this problem for different
parts of the RL. Finally, we demonstrated how causal
explanations can further enhance the framework to improve
6G services.

As such, we advocate for a stakeholder-centric approach
to XAI which is especially challenging for XRL where
we have to grapple with concepts such as policy and
reward/value functions. Furthermore, as 6G increasingly deals
with safety-critical areas such as autonomy (robots, drones,
resource controller) and healthcare, explaining causal and
not correlated reasons why something happened becomes
more critical for insurance and liability. Counterfactual
arguments need to be made where possible, and this can
be challenging in RL. We have shown how one design can
remote control drones and use xApp Q-learning at the DU
to operate and create rApp counterfactual arguments at the
CU of 6G ORAN. However, challenges such as trade-off
between performance and explainability, lack of ground-
truth for explanation, integration of XAl systems into the
existing network infrastructure may still affect the real-world
implementation. To this end, companies such as ERICSSON
have tried to come up with solutions for XRL in adjusting
the antenna for better KPIs and coverage region by USs.

In future work, we would like to think that all of these
approaches may be too overwhelming for innovators and
end-users outside the telecommunication and Al industry.
Thankfully the recent advances in LLMs may help them
specify requirements in communications, edge Al, privacy,
and security. Our recent advances in 6G LLMs have embedded
standards, research papers, and best practices in the LLM as
an RAG database and can provide the knowledge we shared
today as part of the 6G design specification for diverse but
important end-user requirements [210].

Conclusion: Emerging techniques in explaining ma-
chine learning, especially RL, need to be tailored to
the specific application, the usage context, and the
human stakeholder involved. Future safety-critical 6G
applications require more than correlated explana-
tions: they need causal arguments and counterfactual
reasoning for different stakeholders.
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